Numerical modelling of dynamic compression
tests on multi-layer Origami plates AR
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Abstract: In this work, the dynamic response of multi-layered Origami plates subjected to uniaxial compression tests has been numerically analyzed. The plates are based in the Miura-Ori single cell, which is defined
through four independent geometrical parameters: two side lengths a and b, sector angle ¢ and folding angle 6. Four-layer specimens have been considered, and two different configurations: homogeneous or graded
stiffness structures. Experimental results, involving quasi-static compression tests published in the scientific literature, have been used in order to validate the developed numerical model. The results show the influence
of compression velocity: the slope of the densification area is higher as the compression velocity increases and the apparition of waves due to dynamic effects is more pronounced for higher velocities.

. 1.2. Geometry of the graded structure: To create a 3D structure with geometric gradient, layers with
1 Descrlptlon Of the Problem different sector angles are stacked in the out-of-plane z direction. In this case, the geometrical parameters

. L . . . . . . . must fulfil some additional constraints
The problem analyzed consists on the uniaxial compression test of multi-layer Origami plates, in dynamic regime. The

base geometry is the Miura-Ori unit cell, which can be defined using four independent geometrical parameters, which

lead to six new geometrical entities defined by the following equations: Layer4 l:>
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2. Material and Numerical Model 2.3. Numerical model
2.1. Material properties for Brass (CuZn40) All the components, the two plates and the multi-layer origami structure, are defined as shell geometries

The material of the main structure has been considered
has elastic-plastic with linear hardening equation.

Density P =833gcm? Model Information
Elastic Modulus E=111.1GPa Number of J—
Poisson coeficient ¥ =0.346 elements

. a, -
Yield stress 1 =142 MPa Element type S4R
Tensile strength Tu =424.9 MPa
Elongation Su=0242

2.2. Material properties for steel: Material
considered for the compressive plates.

=

3. Validation 4. Results
The numerical model has been validated with experimental results presented in the literature [1] 4.1. Influence of the compression velocity

Density f7=7.85g-cm>
Elastic Modulus E=210.0GPa

Experimental [1] ‘ ‘ Numerical

The slope of the
densification area is
higher as the
compression velocity
increases.

Displacement =0 mm

Displacement = 1.3 mm

Displacement = 6.7 mm

Displacement = 16.5 mm

Displacement = 19.2 mm The apparition of
waves  due  to
dynamic effects is

more  pronounced

The relative error in terms of absorbed energy is 3.28 % ‘ MODEL VALIDATED for higher velocities
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O The apparition of waves in the initial stages of the compression test, due to dynamic effects, is more pronounced for
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O The slope of the densification area in the Force-Displacement curve is higher as the compression velocity increases.
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O The model will be used in future investigations, analyzing different geometrical configurations.
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