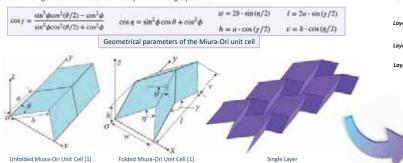
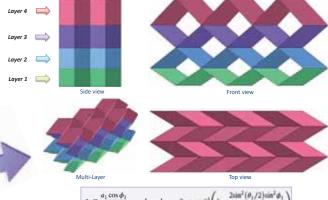


Numerical modelling of dynamic compression tests on multi-layer Origami plates

J. Aranda-Ruiz^{1*}, M.M. Moure²


¹Department of Continuum Mechanics and Structural Analysis ²Department of Bioengineering and Aerospace Engineering *jaranda@ing.uc3m.es


Abstract: In this work, the dynamic response of multi-layered Origami plates subjected to uniaxial compression tests has been numerically analyzed. The plates are based in the Miura-Ori single cell, which is defined through four independent geometrical parameters: two side lengths a and b, sector angle ϕ and folding angle θ . Four-layer specimens have been considered, and two different configurations: homogeneous or graded stiffness structures. Experimental results, involving quasi-static compression tests published in the scientific literature, have been used in order to validate the developed numerical model. The results show the influence of compression velocity: the slope of the densification area is higher as the compression velocity increases and the apparition of waves due to dynamic effects is more pronounced for higher velocities.

1. Description of the Problem

The problem analyzed consists on the uniaxial compression test of multi-layer Origami plates, in dynamic regime. The base geometry is the Miura-Ori unit cell, which can be defined using four independent geometrical parameters, which lead to six new geometrical entities defined by the following equations:

1.2. Geometry of the graded structure: To create a 3D structure with geometric gradient, layers with different sector angles are stacked in the out-of-plane z direction. In this case, the geometrical parameters must fulfil some additional constraints

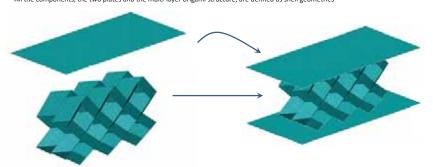
1.1. Configurations analyzed:

- o Homogeneous structure: $\phi_1=48^\circ$ $\phi_2=48^\circ$ $\phi_3=48^\circ$ $\phi_4=48^\circ$
- o Graded structure: $\phi_1=42^\circ$ $\phi_2=46^\circ$ $\phi_3=50^\circ$ $\phi_4=54^\circ$

2. Material and Numerical Model

2.1. Material properties for Brass (CuZn40)

The material of the main structure has been considered has elastic-plastic with linear hardening equation.

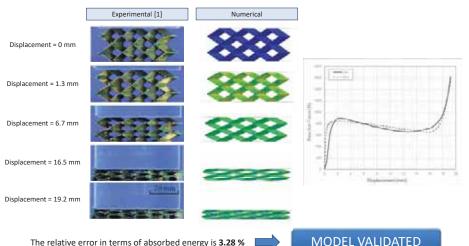

Density	ρ = 8.33 g·cm ⁻³
Elastic Modulus	E = 111.1 GPa
Poisson coeficient	ν = 0.346
Yield stress	σ_y = 142 MPa
Tensile strength	σ_u = 424.9 MPa
Flongation	$\varepsilon_u = 0.242$

2.2. Material properties for steel: Material considered for the compressive plates

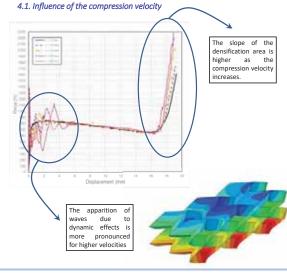
Density	ρ = 7.85 g·cm ⁻³
Elastic Modulus	E = 210.0 GPa

2.3. Numerical model

All the components, the two plates and the multi-layer origami structure, are defined as shell geometries



Model Information Number of 45600 S4R


sin2d.

3. Validation

The numerical model has been validated with experimental results presented in the literature [1]

4. Results

5. Concluding Remarks

- O Using the Finite Element Method, a full 3-D numerical model of the compression tests in multi-layer metamaterial plate, has been implemented.
- O The numerical model has been validated with results published in the literature, leading to a relative error of about 3 %.
- O The morphological evolution of the structure during the compression process reproduce accurately the experimental
- O The apparition of waves in the initial stages of the compression test, due to dynamic effects, is more pronounced for
- O The value of the displacement at which the force stabilization occurs, increases with the compression velocity.
- O The slope of the densification area in the Force-Displacement curve is higher as the compression velocity increases
- O The model will be used in future investigations, analyzing different geometrical configurations.

The relative error in terms of absorbed energy is 3.28 %

References

[1] Ma J., Song J., Chen Y. An origami-inspired structure with graded stiffness. International Journal of Mechanical Sciences 2018; 136:134-142.

[2] Yu X., Zhou J., Liang H., Jiang Z., Wu L. Mechanical metamaterials associated with stiffness, rigidity and

compressibility: A brief review Progress in Materials Science 2018; 94:114-173.

[3] Mousanezhad D., Haghpanah B., Ghosh R., Hamouda A.S., Nayeb-Hashemi H., Vaziri A. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theoretical and Applied Mechanics Letters 2016; 6:81-96.

Acknowledges:

This work was supported in part by:

The financial support provided by University Carlos III of Madrid through the "Aid for the mobility of the own research program