A DISCUSSION ABOUT FINITE ELEMENT MODELING OF SLM PRODUCED STENTS Alessandro Muzio¹, Francesca Berti¹, Valentina Finazzi², Ali Gokhan Demir², Barbara Previtali², Giancarlo Pennati¹ and Lorenza Petrini³ ¹ LaBS, Chemistry, Materials and Chemical Engineering Department, Politecnico di Milano ² Department of Mechanical Engineering, Politecnico di Milano ³ Department of Civil and Environmental Engineering, Politecnico di Milano ## INTRODUCTION #### SELECTIVE LASER MELTING - Additive manufacturing technique employing high power-density laser to create layer by layer 3D parts through the - selective melting of metal powder particles. <u>ADVANTAGES</u>: Customization, complex geometries, low fast production time, high mechanical performance. CRITICALITIES: Complicated process, defect such as porosities, cracks, residual stresses and un-melted regions, low surface quality [1]. Examples of biomedical parts produced by SLM [2,3] #### SLM STENTS - SLM stents are influenced by the very low dimensions compared to macroscale applications: the necessity of micro or nanoscale particles difficult to handle safely, **size effect** altering microstructure and performances due to the **poor surface quality** are among the <u>criticalities</u> concerning the development of stents produced by SLM [4,5]. - Recently, experimental testing on process parameters, performances has been conducted leading to promising results. Different designs have also been developed and investigated, such as bifurcated stents [6]. Nevertheless, to the authors' knowledge, there are no published studies on Finite Element modeling and simulation of SLM stents. #### AIM: - To build a SLM produced stent model for functional FE Analysis - To figure out an effective computational approach for rapid comparison with experimental tests and - To define general guidelines for numerical simulations on SLM stents. # **MODELING SLM PRODUCED STENTS** ### (1) CAD vs SLM - The comparison of the initial CAD model and the final 3D part produced by SLM shows significant differences in strut thickness, surface roughness and overall irregularities and defects. - In order to computationally investigate the SLM stent behaviour, taking into account the 'as built' - device geometry is necessary to develop a model. X-ray **microtomography** scans can be useful, however **heavy and difficult to process data** are generated, which can prevent direct meshing procedure with tetrahedral or hexahedral elements. - Centerline extraction from the uCT scans can be performed, allowing for a beam element model to be created and assessed ## (3) REAL STENT SIMULATION MATERIAL MODEL: Experimental data from tensile tests on specimens manufactured with the same SLM parameters employed for stents. high geometrical irregularity Centerline extraction Beam Modeling 5 different beam element sizes were confronted to find mesh - uCT stent reconstruction Tensile test simulation - Centerline Size 150 µm convergency Conclusion: element size of 75 µm was found to be convergent. # Size 75 um #### **BEAM SECTION SENSITIVITY:** Given the high random **geometrical variability of SLM processed devices**, beam cross-section geometry was analysed, in order to verify the sensitivity of the model to the cross-section selection. The variability range was derived from measurements on the μCT geometry, both squared and circular geometries were considered: μСΤ **SQ-1**. a = 150 um SQ-2, a = 150/√2 µm C1, d = 120 µm C2, d = 150 µm C3, d = 180 µm Conclusion: different shape and dimension of the beam lead to different results. In order to choose the suitable values for these parameters, experimental validation and correct μCT measurements of the section variability are required. # (2) PRELIMINARY MODEL INVESTIGATION In order to verify the accuracy of a beam model, a **comparison** between beam and 3D hexahedral element was performed. Initial CAD geometry was employed, presenting **trapezoidal-shaped struts** with variable cross-sectional Area along the stent geometry. Beam mesh Mix T2 - T3 - Centerline from CAD elements, whereas for the beam elements different section shapes were considered (trapezoidal T. squared SQ). Along the geometry, beam sections were **uniformly** distributed (T1, T2, SQ) except for one mixed configuration (Mix T2 - T3), where 2 different beam cross-sections were assigned to different regions of the SECTIONS: Solid mesh was built with 5x5 C3D8 | | 25 | | | | | | | | | |-------------------|----|------|-----|------|-----|------|-----|--------|------| | | 20 | | | | | // | | | | | | 15 | | | | | | / - | C3D8 | | | | 15 | | | | | | - | Mix T2 | - T3 | | | 10 | | | | | | - | T1 | | | | 10 | | | | | | - | —T2 | | | | 5 | | | | | | - | — SQ | | | | 0 | | | | | | | | | | | | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | | | | Displacement [mm] | | | | | | | | | | | | 0 | !! | | 41 | | | | | | Tensile test simulation Conclusion: given the variable cross-sectional Area of the 3D geometry, beam cross-section must be assigned accordingly with this variability. Mixing different beam cross-sections along the centerline leads to better comparison with hexahedral element. ## **FINAL CONSIDERATIONS** Finite element modeling of stent manufactured by SLM was accomplished through beam element technique, from which the following rules and guidelines can be deduced: annous - Centerline extraction from µCT scans is mandatory in order to approximate and discretize the real SLM stent geometry. - Different **beam cross-section** can alter analysis results, and therefore must be selected accordingly to μCT scanning. Strut cross-sections of as-built SLM stents appear to be **larger** than CAD models and **circular-like**, despite the original CAD trapezoidal geometry. Realistic modeling must consider this discrepancies. Mesh convergency was demonstrated when element size equals **half the diameter** of a beam circular cross-section: for *d* = 150 μm, the optimal element size was found to be 75 μm. Further research should investigated into experimental validation of FE results and model improvement