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Introduction

Introduction: The microstructure of the aortic tissue influences the mechanical properties of the aorta
and it is the main responsible for the onset of pathology of the aneurysm (ATAA) [1]. The presence of
collagen fibers within the tissue provides mechanical hyperelasticity and anisotropy. Previous state of art
in-silico studies considered the Finite Element simulation of ATAA cases through simplified linear elastic
or non structurally motivated models [2]. However, a complete analysis of the ATAA tissue has to include
both mechanical and microstructural characterization for the definition of a proper constitutive model, 4
which is anisotropic and hyperelastic.

Aim: The simultaneous evaluation of the biaxial mechanical properties together with the fiber content of .
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Light Scattering (SALS) [3] and biaxial traction was developed.

* The fitted experimental data were used to reproduce an ATAA case in the in-silico FE environment,
through a patient case specific Fluid Structure Interaction (FSI) simulation.

Materials and Methods

Experimental setup: The setup is composed by an optical part responsible for the SALS Data fitting: The SALS and mechanical data were used to fit a fiber-based constitutive model for

characterization of the specimen and a mechanical part responsible for the biaxial traction the ATAA tissue [4]. The microstructural parameters were evaluated on the basis of fiber
distribution from SALS analysis.
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implemented for ANSYS through a
custom user defined function
developed in FORTRAN.
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Results a

Constitutive model fitting results: The constitutive model correctly coped the experimental data Dynamic fiber distribution results: The ATAA case revealed an higher fiber dispersion in

according to the constrained fitting (R?= 0.96 and R2= 0.97 for healthy and ATAA cases) comparison with the healthy case. Sensible differences emerged from the evaluation of
distributions according to the different tension states. A strong fiber redistribution occurred at
the 1:0.5 and 0.5:1 tension ratios.
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In-silico FE model results: The fiber-based model was correctly
implemented in the FE environment. The hydraulic pressure and
flow range were correctly reproduced within the physiological
range (110-76 mmHg and 2.35 m/s). The presence of the ATAA
bulge produced a sensible pressure drop at systolic peak. The
results on the structural domain are reported at systolic pressure
maximum. The stress distributions on the structural domain
revealed a strong anisotropy. In particular, the circumferential
stress exhibited peaks in the inner curvature of the ATAA
structure, while the longitudinal stress peaks occurred at the
outer curvature area.
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The complete characterization of both healthy and ATAA tissue was assessed through a new experimental setup providing both microstructural and mechanical characterization. The experimental

data were interpreted through a fiber-based hyperelastic and anisotropic constitutive model and the dynamical redistribution of the fibers within the biaxially tensioned specimen was assessed.
Finally, the fiber-based constitutive model was correctly implemented in the FE environment through the simulation of a given patient specific ATAA case.
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