A Method for the Registration of 3D Blood Vessel Models based on CT and Ultrasound Imaging

A. Hegner¹, W. Derwich², A. Wittek¹, T. Schmitz-Rixen², C. Blase¹, A. Huß¹

¹ Frankfurt University of Applied Sciences, Personalized Biomedical Engineering Laboratory, Biomechanics Group, Germany

² Goethe University Hospital Frankfurt am Main, Department of Vascular and Endovascular Surgery, Germany

Background

- The criteria for the surgical treatment of life-threatening abdominal aortic aneurysms (AAAs) are based on diameter and growth rate.
- These criteria, derived from statistical distributions, are not individual and therefore not applicable to all patients.
- Biomechanical modeling is used to find more meaningful, patient-specific factors for surgery indication.

Material and Methods

Patient Specific 3D Blood Vessel Models from Volumetric Image Data

- Various imaging modalities with different advantages can be used to find those new predictors.
- Ultrasound (US) imaging [1] provides dynamic information but only a segment of the AAA. Computed Tomography (CT) [2] provides the whole geometry but just a static picture.
- To use the advantages of both imaging modalities, a registration algorithm for the alignment of both geometries is needed.

2 Registration Routine

Registration using an ICP (Iterative Closest Point) algorithm, which iteratively performs the steps 1-3:

